Title: | Adaptive Moose Surveys |
---|---|
Description: | Adaptive Moose surveys. |
Authors: | Subhash Lele [aut], Sophie Czetwertynski [aut], Peter Solymos [aut, cre] , Steffi LaZerte [aut], Government of Yukon [fnd] |
Maintainer: | Peter Solymos <[email protected]> |
License: | GPL-2 |
Version: | 0.8-0 |
Built: | 2024-11-30 07:20:49 UTC |
Source: | https://github.com/psolymos/moosecounter |
Fit composition model for Moose using a multinomial model to capture how predictors affect composition data; calculate prediction intervals based on composition model; and extract useful summaries.
mc_check_comp(x) mc_fit_comp(x, vars = NULL) mc_models_comp(model_list_comp, coefs = TRUE) mc_predict_comp( total_model_id, comp_model_id, model_list_total, model_list_comp, x, do_avg = FALSE, fix_mean = FALSE, PI = NULL ) subset_CPI_data(CPI, ss) pred_density_moose_CPI(CPI, ...)
mc_check_comp(x) mc_fit_comp(x, vars = NULL) mc_models_comp(model_list_comp, coefs = TRUE) mc_predict_comp( total_model_id, comp_model_id, model_list_total, model_list_comp, x, do_avg = FALSE, fix_mean = FALSE, PI = NULL ) subset_CPI_data(CPI, ss) pred_density_moose_CPI(CPI, ...)
x |
A Moose data frame object. |
vars |
Column names of 'x' to be used as predictors for the composition model. |
model_list_comp |
Named list of total composition models. |
coefs |
logical, return coefficient table too. |
total_model_id |
Model ID or model IDs for total moose model (can be multiple model IDs from 'names(model_list_total)'). |
comp_model_id |
Model ID or model IDs for composition model (single model ID from 'names(model_list_comp)'). |
model_list_total |
Named list of total moose models. |
do_avg |
Logical, to do model averaging or not. |
fix_mean |
logical, use the fixed (rounded) mean as the Multinomial size instead of the bootstrap PI counts. |
PI |
Total Moose PI object. |
CPI |
Composition PI object. |
ss |
A subset of rows (logical or numeric vector). |
... |
Other arguments passed to underlying functions. |
mc_options(B=10) x <- read.csv( system.file("extdata/MayoMMU_QuerriedData.csv", package="moosecounter")) ## Prepare Moose data frame object x <- mc_update_total(x) ## Total moose model list vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815", "NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf", "ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815") ML <- list() ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB") ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB") ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP") ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB") ## Composition odel list CML <- list() CML[['FireDEMSub']] <- mc_fit_comp(x, "Fire8212_DEM815") ## Stats from the models mc_models_comp(CML) ## Calculate PI CPI <- mc_predict_comp( total_model_id="Model 3", comp_model_id='FireDEMSub', model_list_total=ML, model_list_comp=CML, x=x, do_avg=FALSE) ## Predict density pred_density_moose_CPI(CPI)
mc_options(B=10) x <- read.csv( system.file("extdata/MayoMMU_QuerriedData.csv", package="moosecounter")) ## Prepare Moose data frame object x <- mc_update_total(x) ## Total moose model list vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815", "NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf", "ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815") ML <- list() ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB") ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB") ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP") ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB") ## Composition odel list CML <- list() CML[['FireDEMSub']] <- mc_fit_comp(x, "Fire8212_DEM815") ## Stats from the models mc_models_comp(CML) ## Calculate PI CPI <- mc_predict_comp( total_model_id="Model 3", comp_model_id='FireDEMSub', model_list_total=ML, model_list_comp=CML, x=x, do_avg=FALSE) ## Predict density pred_density_moose_CPI(CPI)
Functions to explore relationships between total Moose or composition as response vs. environmental predictor variables.
mc_plot_univariate( i, x, dist = "ZINB", base = TRUE, type = c("density", "map", "fit"), interactive = FALSE ) mc_plot_multivariate(vars, x, alpha = NULL) mc_plot_comp(i, x)
mc_plot_univariate( i, x, dist = "ZINB", base = TRUE, type = c("density", "map", "fit"), interactive = FALSE ) mc_plot_multivariate(vars, x, alpha = NULL) mc_plot_comp(i, x)
i |
Column name from 'x' to be used as a predictor. |
x |
Data frame with Moose data. |
dist |
Count distribution ('P', 'NB', 'ZIP', or 'ZINB'). |
base |
Logical, draw base graphics or ggplot2. |
type |
Character, type of plot to be drawn ('"density"', '"map"', '"fit"'). Base plot can draw all 3, ggplot2 can only draw one at a time. |
interactive |
Logical, draw interactive plot (not available for base plots). |
vars |
A vector of column names from 'x' to be used as a predictor. |
alpha |
Alpha level defining 'mincriterion = 1 - alpha' for 'partykit::ctree()'. |
'mc_plot_univariate' implements visual univariate (single predictor) exploration for the total Moose count models.
'mc_plot_multivariate' implements visual multivariate (multiple predictors) exploration based on regression trees (recursive partitioning in a conditional inference framework) for total Moose counts.
'mc_plot_comp' implements visual univariate (single predictor) exploration for the multinomial composition models.
## Prepare Moose data from Mayo x <- read.csv( system.file("extdata/MayoMMU_QuerriedData.csv", package="moosecounter")) switch_response("total") x <- mc_update_total(x) ## Univariate exploration for total Moose mc_plot_univariate("Subalp_Shrub_250buf", x, "ZINB") ## Multivariate exploration for total Moose vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815", "NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf", "ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815") mc_plot_multivariate(vars, x) ## Univariate exploration for composition mc_plot_comp("Fire8212_DEM815", x)
## Prepare Moose data from Mayo x <- read.csv( system.file("extdata/MayoMMU_QuerriedData.csv", package="moosecounter")) switch_response("total") x <- mc_update_total(x) ## Univariate exploration for total Moose mc_plot_univariate("Subalp_Shrub_250buf", x, "ZINB") ## Multivariate exploration for total Moose vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815", "NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf", "ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815") mc_plot_multivariate(vars, x) ## Univariate exploration for composition mc_plot_comp("Fire8212_DEM815", x)
We do the stratification BEFORE the surveys are done using the fixed wing aircraft. Every cell is stratified as LOW or HIGH. Then some of the LOW and some of HIGH are surveyed to find how many moose are there.
mc_gassaway(y1, y2, N1, N2) ## S3 method for class 'mc_gassaway' print(x, ...)
mc_gassaway(y1, y2, N1, N2) ## S3 method for class 'mc_gassaway' print(x, ...)
y1 , y2
|
surveyed cell-level population counts in the 2 strata |
N1 , N2
|
total number of cells that were stratified |
x |
object to print |
... |
arguments passed to the print method |
y1 <- rpois(20, 50) y2 <- rpois(30, 5) N1 <- 40 N2 <- 50 mc_gassaway(y1, y2, N1, N2)
y1 <- rpois(20, 50) y2 <- rpois(30, 5) N1 <- 40 N2 <- 50 mc_gassaway(y1, y2, N1, N2)
A function to get and set the package related options.
mc_options(...)
mc_options(...)
... |
options to set (see Details) |
* 'method': Optimization algorithm * 'response': Response variable * 'MAXCELL': Max total abundance in cells * 'MINCELL': Min abundance for composition in cells * 'B': Number of bootstrap runs * 'alpha': Type I error rate for PI * 'wscale': Weight * 'sightability': Sightability * 'seed': Random seed * 'Ntot': set to 'MOOSE_TOTA' (internally changing to '"COW_TOTA"' when modeling cows) * 'srv_name': Filtering variable * 'srv_value': Filtering value * 'area_srv': Column indicating survey areas * 'Area': Area * 'xy': Long/Lat * 'composition': Composition variables
## original values o <- mc_options() str(o) o$B ## set B to new value mc_options(B = 20) mc_options()$B ## restore orgiginal values mc_options(o) mc_options()$B
## original values o <- mc_options() str(o) o$B ## set B to new value mc_options(B = 20) mc_options()$B ## restore orgiginal values mc_options(o) mc_options()$B
Run the Shiny app to estimate total Moose and composition.
run_app()
run_app()
if (interactive()) { run_app() }
if (interactive()) { run_app() }
'switch_response' switches between total Moose vs. cows only. This sets the column name for total Moose estimation. 'mc_update_total' Updates/prepares the Moose data set for downstream analyses (i.e. calculates some derived variables, sets a surveyed/unsurveyed indicator, and optionally takes a subset). 'mc_fit_total' fit total Moose abundance models. 'mc_models_total' prints out estimates from the models.
switch_response(type = "total") mc_update_total(x, srv = NULL, ss = NULL) mc_fit_total( x, vars = NULL, zi_vars = NULL, dist = "ZINB", weighted = FALSE, robust = FALSE, intercept = c("both", "count", "zero", "none"), xv = FALSE, ... ) mc_models_total(ml, x, coefs = TRUE) mc_predict_total(model_id, ml, x, do_boot = TRUE, do_avg = FALSE) mc_get_pred(PI, ss = NULL) pred_density_moose_PI(PI) mc_plot_residuals(model_id, ml, x) mc_plot_predpi(PI) mc_plot_pidistr(PI, id = NULL, plot = TRUE, breaks = "Sturges") mc_plot_predfit(i, PI, ss = NULL, interactive = FALSE)
switch_response(type = "total") mc_update_total(x, srv = NULL, ss = NULL) mc_fit_total( x, vars = NULL, zi_vars = NULL, dist = "ZINB", weighted = FALSE, robust = FALSE, intercept = c("both", "count", "zero", "none"), xv = FALSE, ... ) mc_models_total(ml, x, coefs = TRUE) mc_predict_total(model_id, ml, x, do_boot = TRUE, do_avg = FALSE) mc_get_pred(PI, ss = NULL) pred_density_moose_PI(PI) mc_plot_residuals(model_id, ml, x) mc_plot_predpi(PI) mc_plot_pidistr(PI, id = NULL, plot = TRUE, breaks = "Sturges") mc_plot_predfit(i, PI, ss = NULL, interactive = FALSE)
type |
The type of the response, can be '"total"' or '"cows"' for 'switch_response'. |
x |
A data frame with Moose data, or a data frame from 'mc_update_total()'. |
srv |
Logical vector, rows of 'x' that are surveyed, falls back to global options when 'NULL'. |
ss |
Logical vector to subset 'x', default is to take no subset. |
vars |
column names of 'x' to be used as predictors for the count model. |
zi_vars |
optional, column names of 'x' to be used as predictors for the zero model. |
dist |
Count distribution ('P', 'NB', 'ZIP', 'ZINB'). |
weighted |
Logical, to use weighting to moderate influential observations. |
robust |
Logical, use robust regression approach. |
intercept |
Which intercepts to keep. Dropped intercepts lead to regression through the origin (at the linear predictor scale). |
xv |
Logical, should leave-one-out error be calculated. |
... |
Other arguments passed to 'zeroinfl2()'. |
ml |
Named list of models. |
coefs |
logical, return coefficient table too. |
model_id |
model ID or model IDs (can be multiple from 'names(ml)'). |
do_boot |
Logical, to do bootstrap or not. |
do_avg |
Logical, to do model averaging or not. |
PI |
PI object returned by 'mc_predict_total()' |
id |
Cell ID. |
plot |
Logical, to plot or just give summary. |
breaks |
Breaks argument passed to 'graphics::hist()'. |
i |
Column (variable) name or index. |
interactive |
Logical, draw interactive plot. |
mc_options(B=10) x <- read.csv( system.file("extdata/MayoMMU_QuerriedData.csv", package="moosecounter")) #switch_response("cows") # for cows only switch_response("total") x <- mc_update_total(x) mc_plot_univariate("Subalp_Shrub_250buf", x, "ZINB") vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815", "NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf", "ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815") mc_plot_multivariate(vars, x) ML <- list() ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB") ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB") ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP") ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB") mc_models_total(ML, x) mc_plot_residuals("Model 3", ML, x) PI <- mc_predict_total( model_id=c("Model 1", "Model 3"), ml=ML, x=x, do_boot=TRUE, do_avg=TRUE) mc_get_pred(PI) pred_density_moose_PI(PI) mc_plot_predpi(PI) mc_plot_pidistr(PI) mc_plot_pidistr(PI, id=2)
mc_options(B=10) x <- read.csv( system.file("extdata/MayoMMU_QuerriedData.csv", package="moosecounter")) #switch_response("cows") # for cows only switch_response("total") x <- mc_update_total(x) mc_plot_univariate("Subalp_Shrub_250buf", x, "ZINB") vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815", "NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf", "ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815") mc_plot_multivariate(vars, x) ML <- list() ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB") ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB") ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP") ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB") mc_models_total(ML, x) mc_plot_residuals("Model 3", ML, x) PI <- mc_predict_total( model_id=c("Model 1", "Model 3"), ml=ML, x=x, do_boot=TRUE, do_avg=TRUE) mc_get_pred(PI) pred_density_moose_PI(PI) mc_plot_predpi(PI) mc_plot_pidistr(PI) mc_plot_pidistr(PI, id=2)