Package: QPAD (via r-universe)

August 30, 2024

Type Package		
Title QPAD estimates		
Version 0.0-3		
Date 2016-10-17		
Author Peter Solymos		
Maintainer Peter Solymos <solymos@ualberta.ca></solymos@ualberta.ca>		
Suggests MASS		
Description QPAD.		
URL https://github.com/psolymos/QPAD		
BugReports https://github.com/psolymos/QPAD/issues		
License GPL-2		
LazyLoad yes		
LazyData true		
Repository https://psolymos.r-universe.dev		
RemoteUrl https://github.com/psolymos/QPAD		
RemoteRef HEAD		
RemoteSha f103650c58199c0a6dc74fb1bed1695465e902b7		

Contents

	QPAD	2
Index		4

QPAD

QPAD

QPAD: Calibrating indices of avian density from non-standardized survey data

Description

The analysis of large heterogeneous data sets of avian point-count surveys compiled across studies is hindered by a lack of analytical approaches that can deal with detectability and variation in survey protocols.

We reformulated removal models of avian singing rates and distance sampling models of the effective detection radius (EDR) to control for the effects of survey protocol and temporal and environmental covariates on detection probabilities.

These estimating procedures as described in Solymos et al. (2013) are implemented in the 'detect' R package.

The estimates of singing rates and effective detection distances for North American boreal forest songbird species is provided as part of the QPAD package.

Using offsets derived from these estimates can significantly reduce the computational burden when fitting complex models to large data sets and can be used with a wide range of statistical techniques for inference and prediction of avian densities.

Arguments

... other arguments passed to the functions

Details

The analysis of large heterogeneous data sets of avian point-count surveys compiled across studies is hindered by a lack of analytical approaches that can deal with detectability and variation in survey protocols.

We reformulated removal models of avian singing rates and distance sampling models of the effective detection radius (EDR) to control for the effects of survey protocol and temporal and environmental covariates on detection probabilities.

These estimating procedures as described in Solymos et al. (2013) are implemented in the 'detect' R package.

The estimates of singing rates and effective detection distances for North American boreal forest songbird species is provided as part of the QPAD package.

Using offsets derived from these estimates can significantly reduce the computational burden when fitting complex models to large data sets and can be used with a wide range of statistical techniques for inference and prediction of avian densities.

Author(s)

Peter Solymos

QPAD

Examples

Not run:
load_BAM_QPAD(version=2)

End(Not run)

Index

qpad-package (QPAD), 2