Title: | Population Viability Analysis with Data Cloning |
---|---|
Description: | Likelihood based population viability analysis in the presence of observation error and missing data. The package can be used to fit, compare, predict, and forecast various growth model types using data cloning. |
Authors: | Khurram Nadeem [aut], Peter Solymos [cre, aut] |
Maintainer: | Peter Solymos <[email protected]> |
License: | GPL-2 |
Version: | 0.1-7 |
Built: | 2024-10-24 02:42:43 UTC |
Source: | https://github.com/psolymos/PVAClone |
Likelihood based population viability analysis in the presence of observation error and missing data. The package can be used to fit, compare, predict, and forecast various growth model types using data cloning.
The package implements data cloning based population viability analysis methodology developed by Nadeem and Lele (2012). This includes model estimation, model selection and forecasting of future population abundances for estimate the extinction risk of a population of interest.
pva
: main function for model fitting.
model.select
: main function for model model selection.
Growth models: gompertz
, ricker
,
bevertonholt
,
thetalogistic
, thetalogistic_D
.
Khurram Nadeem, Peter Solymos
Maintainer: Peter Solymos <[email protected]>
Nadeem, K., Lele S. R., 2012. Likelihood based population viability analysis in the presence of observation error. Oikos 121, 1656–1664.
## Not run: ## model selection for data with missing observations data(songsparrow) ## model without observation error m1 <- pva(songsparrow, gompertz("none"), 2, n.iter=1000) ## model with Poisson observation error m2 <- pva(songsparrow, gompertz("poisson"), 2, n.iter=1000) ## model with Poisson observation error is strongly supported model.select(m1, m2) ## End(Not run)
## Not run: ## model selection for data with missing observations data(songsparrow) ## model without observation error m1 <- pva(songsparrow, gompertz("none"), 2, n.iter=1000) ## model with Poisson observation error m2 <- pva(songsparrow, gompertz("poisson"), 2, n.iter=1000) ## model with Poisson observation error is strongly supported model.select(m1, m2) ## End(Not run)
This function prints the fancy model names in summaries.
fancyPVAmodel(object, initial = "PVA object:\n", part = 1:2)
fancyPVAmodel(object, initial = "PVA object:\n", part = 1:2)
object |
A fitted 'pva' object. |
initial |
A fancy header for the fancy output. |
part |
Integer, |
Character with fancy model summary.
Khurram Nadeem and Peter Solymos
Generate latent variable of a hierarchical PVA model.
generateLatent(x, ...)
generateLatent(x, ...)
x |
A fitted PVA model object. |
... |
Arguments passed to |
It uses MLE from a fitted PVA model to generate values for the latent variables.
A matrix with n.iter * n.chains
rows and as
many columns as the length of the time series.
Khurram Nadeem and Peter Solymos
Ponciano, J. M. et al. 2009. Hierarchical models in ecology: confidence intervals, hypothesis testing, and model selection using data cloning. Ecology 90, 356–362.
## Not run: data(paurelia) m <- pva(paurelia, gompertz("normal"), 5) p <- generateLatent(m, n.chains=1, n.iter=1000) summary(p) ## End(Not run)
## Not run: data(paurelia) m <- pva(paurelia, gompertz("normal"), 5) p <- generateLatent(m, n.chains=1, n.iter=1000) summary(p) ## End(Not run)
Population growth model to be used in model fitting
via pva
.
gompertz(obs.error = "none", fixed) ricker(obs.error = "none", fixed) thetalogistic(obs.error = "none", fixed) thetalogistic_D(obs.error = "none", fixed) bevertonholt(obs.error = "none", fixed)
gompertz(obs.error = "none", fixed) ricker(obs.error = "none", fixed) thetalogistic(obs.error = "none", fixed) thetalogistic_D(obs.error = "none", fixed) bevertonholt(obs.error = "none", fixed)
obs.error |
Character, describing the observation error.
Can be |
fixed |
Named numeric vector or list with fixed parameter names and values. Can be used for providing alternative prior specifications, see Details and Examples. |
These functions can be called in pva
to fit the following
growth models to a given population time series assuming both
with and without observation error. When assuming the presence of
observation error, either the Normal
or the Poisson observation error model must be assumed within the
state-space model formulation (Nadeem and Lele, 2012). The growth
models are defined as follows.
Gompertz (gompertz
):
where is log abundance at time
and
.
Ricker (ricker
):
where is log abundance at time
and
.
Theta-Logistic (thetalogistic
):
where is log abundance at time
and
.
Theta-Logistic with Demographic Variability
(thetalogistic_D
):
where is log abundance at time
and
, where
is the demographic variability. If
is
missing or fixed at zero, Theta-Logistic model is fitted instead.
Generalized Beverton-Holt (bevertonholt
):
where is log abundance at time
and
.
Observation error models are described in the help page of
pva
.
The argument fixed
can be used to fit the model assuming
a priori values of a subset of the parameters. For instance,
fixing theta equal to one reduces Theta-Logistic and
Generalized Beverton-Holt models to Logistic and Beverton-Holt
models respectively. The number of parameters that should be
fixed at most is , where
is the dimension of
the full model. See examples below and in
pva
and model.select
.
The fixed
argument can be used to provide alternative
prior specification using the BUGS language.
In this case, values in fixed
must be numeric.
Use a list when real fixed values (numeric) and priors (character)
are provided at the same time (see Examples).
Alternative priors can be useful
for testing insensitivity to priors, which is
a diagnostic sign of data cloning convergence.
An S4 class of 'pvamodel' (see pvamodel-class
)
Khurram Nadeem and Peter Solymos
Nadeem, K., Lele S. R., 2012. Likelihood based population viability analysis in the presence of observation error. Oikos 121, 1656–1664.
gompertz() gompertz("poisson") ricker("normal") ricker("normal", fixed=c(a=5, sigma=0.5)) thetalogistic("none", fixed=c(theta=1)) bevertonholt("normal", fixed=c(theta=1)) ## alternative priors ricker("normal", fixed=c(a="a ~ dnorm(2, 1)"))@model ricker("normal", fixed=list(a="a ~ dnorm(2, 1)", sigma=0.5))@model
gompertz() gompertz("poisson") ricker("normal") ricker("normal", fixed=c(a=5, sigma=0.5)) thetalogistic("none", fixed=c(theta=1)) bevertonholt("normal", fixed=c(theta=1)) ## alternative priors ricker("normal", fixed=c(a="a ~ dnorm(2, 1)"))@model ricker("normal", fixed=list(a="a ~ dnorm(2, 1)", sigma=0.5))@model
Functions used internally.
ts_index(x, type=c("density", "expectation"))
ts_index(x, type=c("density", "expectation"))
x |
A vector of observations, possibly with missing values. |
type |
Character, type of index to calculate. |
ts_index
calculates positional indices of elements of a vector
that fulfill the following conditions when type = "density"
:
(1) if there is only one observation present before the first NA
,
it is not selected, else, all the observations preceding to the
first NA
are selected;
(2) if there is only one observation present after the last NA
,
it is not selected, else, all the observations following the
last NA
are selected;
(3) if there is only one observation present between two
consecutive NA
s, it is not selected, else, all the
observations falling between two consecutive NA
s are selected.
ts_index
calculates positional indices of elements of a vector
that immediately follow a missing (NA
) value if
type = "expectation"
. The reason for this
is that these elements depend on missing data given a first order
Markov process. As a result, these need different treatment in
calculating log densities for model selection.
ts_index
returns an integer vector.
Peter Solymos and Khurram Nadeem
## ts_index x <- 1:20 x[c(3,4, 6, 10, 13:15, 20)] <- NA ts_index(x, "density") ts_index(x, "expectation")
## ts_index x <- 1:20 x[c(3,4, 6, 10, 13:15, 20)] <- NA ts_index(x, "density") ts_index(x, "expectation")
Likelihood ratio calculation and model selection for (hierarchical) 'pva' objects.
pva.llr
is the workhorse behind
model.select
. pva.llr
can also
be used for profile likelihood calculations
if called iteratively (no wrapper presently).
pva.llr(null, alt, pred) model.select(null, alt, B = 10^4) ## S3 method for class 'pvaModelSelect' print(x, ...)
pva.llr(null, alt, pred) model.select(null, alt, B = 10^4) ## S3 method for class 'pvaModelSelect' print(x, ...)
null |
A fitted 'pva' object representing the Null Hypothesis. |
alt |
A fitted 'pva' object representing the Alternative Hypothesis (usually broader model). |
B |
Number of replicates to be generated from the latent variables. |
pred |
A matrix of replicates from the latent variables,
e.g. as returned by |
x |
A model selection object to be printed. |
... |
Additional argument for print method. |
These functions implement Ponciano et. al.'s (2009) data cloning likelihood ratio algorithm (DCLR) to compute likelihood ratios for comparing hierarchical (random effect) models. In the population growth models context, these models are (1) with observation error population growth models, and/or (2) population growth models with missing observations.
The functions can also compute likelihood ratios
when both of the population growth models are fixed effect models,
e.g. without observation error Gompertz
model Vs. without observation error Ricker model.
See examples below and in pva
.
pva.llr
returns a single numeric value, the
log likelihood ratio of the two models (logLik0 - logLik1).
model.select
returns a modified data frame
with log likelihood ratio and various information
criteria metrics (delta AIC, BIC, AICc).
The print method gives fancy model names and a human readable interpretation of the numbers.
Khurram Nadeem and Peter Solymos
Ponciano, J. M. et al. 2009. Hierarchical models in ecology: confidence intervals, hypothesis testing, and model selection using data cloning. Ecology 90, 356–362.
Nadeem, K., Lele S. R., 2012. Likelihood based population viability analysis in the presence of observation error. Oikos 121, 1656–1664.
## Not run: data(redstart) m1 <- pva(redstart, gompertz("none"), 2, n.iter=1000) m2 <- pva(redstart, gompertz("poisson"), 2, n.iter=1000) m3 <- pva(redstart, gompertz("normal"), 2, n.iter=1000) p <- generateLatent(m2, n.chains=1, n.iter=10000) pva.llr(m1, m2, p) model.select(m1, m2) model.select(m1, m3) model.select(m2, m3) m1x <- pva(redstart, ricker("none"), 2, n.iter=1000) m2x <- pva(redstart, ricker("poisson"), 2, n.iter=1000) m3x <- pva(redstart, ricker("normal"), 2, n.iter=1000) model.select(m1, m1x) model.select(m2, m2x) model.select(m3, m3x) ## missing data situation data(paurelia) m1z <- pva(paurelia, ricker("none"), 2, n.iter=1000) m2z <- pva(paurelia, ricker("poisson"), 2, n.iter=1000) m3z <- pva(paurelia, ricker("normal"), 2, n.iter=1000) #model.select(m1z, m2z) # not yet implemented #model.select(m1z, m3z) # not yet implemented model.select(m2z, m3z) ## Analysis of song sparrow data in Nadeem and Lele (2012) ## use about 100 clones to get MLE's repoted in the paper. data(songsparrow) m1z <- pva(songsparrow, thetalogistic_D("normal",fixed=c(sigma2.d=0.66)), n.clones=5, n.adapt=3000, n.iter=1000) m2z <- pva(songsparrow, thetalogistic_D("normal",fixed=c(theta=1, sigma2.d=0.66)), n.clones=5, n.adapt=3000,n.iter=1000) m3z <- pva(songsparrow, thetalogistic_D("none",fixed=c(sigma2.d=0.66)), n.clones=5, n.adapt=3000,n.iter=1000) m4z <- pva(songsparrow, thetalogistic_D("none",fixed=c(theta=1,sigma2.d=0.66)), n.clones=5, n.adapt=3000,n.iter=1000) model.select(m2z, m1z) model.select(m3z, m1z) model.select(m4z, m1z) ## profile likelihood m <- pva(redstart, gompertz("normal"), 5, n.iter=5000) p <- generateLatent(m, n.chains=1, n.iter=10000) m1 <- pva(redstart, gompertz("normal", fixed=c(sigma=0.4)), 5, n.iter=5000) ## etc for many sigma values pva.llr(m1, m, p) # calculate log LR for each ## finally, fit smoother to points and plot ## End(Not run)
## Not run: data(redstart) m1 <- pva(redstart, gompertz("none"), 2, n.iter=1000) m2 <- pva(redstart, gompertz("poisson"), 2, n.iter=1000) m3 <- pva(redstart, gompertz("normal"), 2, n.iter=1000) p <- generateLatent(m2, n.chains=1, n.iter=10000) pva.llr(m1, m2, p) model.select(m1, m2) model.select(m1, m3) model.select(m2, m3) m1x <- pva(redstart, ricker("none"), 2, n.iter=1000) m2x <- pva(redstart, ricker("poisson"), 2, n.iter=1000) m3x <- pva(redstart, ricker("normal"), 2, n.iter=1000) model.select(m1, m1x) model.select(m2, m2x) model.select(m3, m3x) ## missing data situation data(paurelia) m1z <- pva(paurelia, ricker("none"), 2, n.iter=1000) m2z <- pva(paurelia, ricker("poisson"), 2, n.iter=1000) m3z <- pva(paurelia, ricker("normal"), 2, n.iter=1000) #model.select(m1z, m2z) # not yet implemented #model.select(m1z, m3z) # not yet implemented model.select(m2z, m3z) ## Analysis of song sparrow data in Nadeem and Lele (2012) ## use about 100 clones to get MLE's repoted in the paper. data(songsparrow) m1z <- pva(songsparrow, thetalogistic_D("normal",fixed=c(sigma2.d=0.66)), n.clones=5, n.adapt=3000, n.iter=1000) m2z <- pva(songsparrow, thetalogistic_D("normal",fixed=c(theta=1, sigma2.d=0.66)), n.clones=5, n.adapt=3000,n.iter=1000) m3z <- pva(songsparrow, thetalogistic_D("none",fixed=c(sigma2.d=0.66)), n.clones=5, n.adapt=3000,n.iter=1000) m4z <- pva(songsparrow, thetalogistic_D("none",fixed=c(theta=1,sigma2.d=0.66)), n.clones=5, n.adapt=3000,n.iter=1000) model.select(m2z, m1z) model.select(m3z, m1z) model.select(m4z, m1z) ## profile likelihood m <- pva(redstart, gompertz("normal"), 5, n.iter=5000) p <- generateLatent(m, n.chains=1, n.iter=10000) m1 <- pva(redstart, gompertz("normal", fixed=c(sigma=0.4)), 5, n.iter=5000) ## etc for many sigma values pva.llr(m1, m, p) # calculate log LR for each ## finally, fit smoother to points and plot ## End(Not run)
Paramecium aurelia abundance time series
data(paurelia)
data(paurelia)
The format is: num [1:20] 2 NA 17 29 39 63 185 258 267 392 ...
Paramecium aurelia abundance time series with a missing value.
Gause (1934: Appendix I, Table 3)
Gause, G.F. (1934). The Struggle for Existence. Williams & Wilkins, Baltimore.
data(paurelia) paurelia plot(paurelia)
data(paurelia) paurelia plot(paurelia)
Population Viability Analysis (PVA).
pva(x, model, n.clones, ...) diagn_scale(object)
pva(x, model, n.clones, ...) diagn_scale(object)
x |
Numeric, a time series. Values must be non-negative, missing values are allowed (but first and last observation must not be missing). |
model |
A 'pvamodel' object returned by a function, see Examples. |
n.clones |
Numeric, number of clones (possibly a vector). |
object |
A fitted 'pva' object returned by the |
... |
Arguments passed to underlying fitting functions,
most notably |
The function implements the first step in PVA, i.e. to fit a given growth model to a population time series data (Nadeem and Lele, 2012). The function employs Lele et. al's (2007, 2010) data cloning (DC) algorithm for computing the maximum likelihood estimates of model parameters along with the corresponding standard errors. See Solymos (2010) for an R implementation of the DC algorithm. The growth models currently available in the package PVAClone are listed on the growthmodels page.
These models can also be fitted assuming the presence of observation error using the general state-space model formulation (Nadeem and Lele, 2012). Currently the Normal and Poisson observation error models are supported.
Normal observation error model:
,
where
is the estimated abundance
on the log scale at time
.
Poisson observation error model:
,
where
is the estimated abundance at time
.
In addition, missing observations can be accommodated in both with or without observation error cases.
An object of class 'pva', see pva-class
.
Khurram Nadeem and Peter Solymos
Lele, S.R., B. Dennis and F. Lutscher, 2007. Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecology Letters 10, 551–563.
Lele, S. R., K. Nadeem and B. Schmuland, 2010. Estimability and likelihood inference for generalized linear mixed models using data cloning. Journal of the American Statistical Association 105, 1617–1625.
Nadeem, K., Lele S. R., 2012. Likelihood based population viability analysis in the presence of observation error. Oikos 121, 1656–1664.
Solymos, P., 2010. dclone: Data Cloning in R. The R Journal 2(2), 29–37. URL: doi:10.32614/RJ-2010-011
Model selection: model.select
Growth models: growthmodels
Class definitions: pva-class
, pvamodel-class
## Not run: data(redstart) data(paurelia) data(songsparrow) ## Gompertz m1 <- pva(redstart, "gompertz", c(5,10)) m2 <- pva(redstart, gompertz("poisson"), c(5,10)) m3 <- pva(redstart, gompertz("normal"), c(5,10)) m1na <- pva(paurelia, "gompertz", c(5,10)) m2na <- pva(paurelia, gompertz("poisson"), c(5,10)) m3na <- pva(paurelia, gompertz("normal"), c(5,10)) m1x <- pva(redstart, gompertz("normal"), 5) m2x <- pva(redstart, gompertz("normal", fixed=c(tau=0.1)), 5) ## Ricker m1 <- pva(redstart, "ricker", c(5,10)) m2 <- pva(redstart, ricker("poisson"), c(5,10)) m3 <- pva(redstart, ricker("normal"), c(5,10)) m1na <- pva(paurelia, "ricker", c(5,10)) m2na <- pva(paurelia, ricker("poisson"), c(5,10)) m3na <- pva(paurelia, ricker("normal"), c(5,10)) m1x <- pva(redstart, ricker("normal"), 5) m2x <- pva(redstart, ricker("normal", fixed=c(tau=0.1)), 5) ## Theta-Logistic m1 <- pva(songsparrow, "thetalogistic", c(5,10)) m2 <- pva(songsparrow, thetalogistic("poisson"), c(2,5)) m3 <- pva(songsparrow, thetalogistic("normal"), c(2,5)) m1x <- pva(songsparrow, thetalogistic_D("normal", fixed=c(sigma2.d=0.66)), 5) m2x <- pva(songsparrow, thetalogistic_D("none", fixed=c(theta=1, sigma2.d=0.66)), 10) m2x summary(m2x) coef(m2x) vcov(m2x) confint(m2x) plot(m2x) plot(diagn_scale(m2x)) ## End(Not run)
## Not run: data(redstart) data(paurelia) data(songsparrow) ## Gompertz m1 <- pva(redstart, "gompertz", c(5,10)) m2 <- pva(redstart, gompertz("poisson"), c(5,10)) m3 <- pva(redstart, gompertz("normal"), c(5,10)) m1na <- pva(paurelia, "gompertz", c(5,10)) m2na <- pva(paurelia, gompertz("poisson"), c(5,10)) m3na <- pva(paurelia, gompertz("normal"), c(5,10)) m1x <- pva(redstart, gompertz("normal"), 5) m2x <- pva(redstart, gompertz("normal", fixed=c(tau=0.1)), 5) ## Ricker m1 <- pva(redstart, "ricker", c(5,10)) m2 <- pva(redstart, ricker("poisson"), c(5,10)) m3 <- pva(redstart, ricker("normal"), c(5,10)) m1na <- pva(paurelia, "ricker", c(5,10)) m2na <- pva(paurelia, ricker("poisson"), c(5,10)) m3na <- pva(paurelia, ricker("normal"), c(5,10)) m1x <- pva(redstart, ricker("normal"), 5) m2x <- pva(redstart, ricker("normal", fixed=c(tau=0.1)), 5) ## Theta-Logistic m1 <- pva(songsparrow, "thetalogistic", c(5,10)) m2 <- pva(songsparrow, thetalogistic("poisson"), c(2,5)) m3 <- pva(songsparrow, thetalogistic("normal"), c(2,5)) m1x <- pva(songsparrow, thetalogistic_D("normal", fixed=c(sigma2.d=0.66)), 5) m2x <- pva(songsparrow, thetalogistic_D("none", fixed=c(theta=1, sigma2.d=0.66)), 10) m2x summary(m2x) coef(m2x) vcov(m2x) confint(m2x) plot(m2x) plot(diagn_scale(m2x)) ## End(Not run)
"pva"
Model class for fitted PVA objects.
Objects can be created by calls of the form new("pva", ...)
.
observations
:Object of class "numeric"
,
vector of observations (must be non-negative but not necessarily
integer), possibly with missing values (NA
).
model
:Object of class "pvamodel"
,
internal representation of the growth model and observation error
structure.
summary
:Object of class "matrix"
,
asymptotic Wald-type summary on the 'original'
scale of the parameters (i.e. not on the scale used
for model fitting and diagnostics).
dcdata
:Object of class "dcFit"
,
internal representation of the data and JAGS model.
call
:Object of class "language"
,
the call.
coef
:Object of class "numeric"
,
point estimates of the model parameters.
fullcoef
:Object of class "numeric"
,
vector possibly containing fixed parameter values.
vcov
:Object of class "matrix"
,
variance covariance matrix of the estimates.
details
:Object of class "dcCodaMCMC"
,
MCMC output from data cloning.
nobs
:Object of class "integer"
,
number of observations (excluding missing values).
method
:Object of class "character"
,
optimization method (data cloning).
The dcmle S4 class from the dcmle R package, directly.
signature(object = "pva")
signature(object = "pva")
signature(object = "pva")
signature(object = "pva")
Khurram Nadeem and Peter Solymos
showClass("pva")
showClass("pva")
coef
, vcov
, confint
,
and summary
methods for 'pva' objects.
signature(object = "pva")
Methods for S4 objects of class 'pva'.
"pvamodel"
S4 class for predefined PVA models.
Objects can be created by calls of the form new("pvamodel", ...)
.
growth.model
:Object of class "character"
,
name of growth model.
obs.error
:Object of class "character"
,
name of observation error type ("none"
,
"poisson"
, "normal"
).
model
:Object of class "dcModel"
,
BUGS model for estimation.
genmodel
:Object of class "dcModel"
,
BUGS model for prediction.
p
:Object of class "integer"
,
number of parameters in model (including fixed parameters!).
support
:Object of class "matrix"
,
range of support for parameters (true parameter scale).
params
:Object of class "character"
,
parameter names (diagnostic scale).
varnames
:Object of class "character"
,
parameter names (true parameter scale).
fixed
:Object of class "nClones"
,
named vector of fixed parameters.
fancy
:Object of class "character"
,
fancy model description.
transf
:Object of class "function"
,
function to transform from true parameter scale to diagnostic
scale (takes care of fixed value which are not part of the
MCMC output.
backtransf
:Object of class "function"
,
function to transform from diagnostic scale to true parameter
scale (takes care of fixed value which are not part of the
MCMC output.
logdensity
:Object of class "function"
,
function to calculate log density (used in model selection).
neffective
:Object of class "function"
,
function to calculate effective sample size from the number
of observations.
No methods defined with class "pvamodel" in the signature.
Khurram Nadeem and Peter Solymos
showClass("pvamodel")
showClass("pvamodel")
Counts for American Redstart (Setophaga ruticilla) at a survey location in the North American Breeding Bird Survey (BBS; Robbins et al. 1986, Peterjohn 1994). BBS record number 0214332808636 observed from 1966 to 1995.
data(redstart)
data(redstart)
The format is: num [1:30] 18 10 9 14 17 14 5 10 9 5 ...
redstart abundance time series
Data reported in B. Dennis, J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F. Staples (unpublished manuscript, see Lele 2006).
Lele, S.R. 2006. Sampling variability and estimates of density dependence: a composite-likelihood approach. Ecology 87, 189–202.
Peterjohn, B.G. 1994. The North American Breeding Bird Survey. Birding 26, 386–398.
Robbins, C.S., D. Bystrak, and P.H. Geissler. 1986. The breeding bird survey: its first fifteen years, 1965–1979. U.S. Fish and Wildl. Serv. Resource Publ. 157. Washington, D.C. 196 pp.
data(redstart) redstart plot(redstart)
data(redstart) redstart plot(redstart)
Counts for Song Sparrow (Melospiza melodia) on Mandarte Island, British Columbia, Canada from 1975–1998 reported in Saether et al. (2000).
data(songsparrow)
data(songsparrow)
The format is: num [1:24] 35 31 45 48 66 9 19 26 54 ...
Song Sparrow abundance time series.
Peter Arcese kindly provided the Song Sparrow population counts data.
Nadeem, K., Lele S. R., 2012. Likelihood based population viability analysis in the presence of observation error. Oikos 121, 1656–1664.
Saether, B. et al. 2000. Estimating the time to extinction in an island population of song sparrows. Proc. R. Soc. B 267, 621–626.
data(songsparrow) songsparrow plot(songsparrow)
data(songsparrow) songsparrow plot(songsparrow)